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Finite-Volume Glauber Dynamics in a Small
Magnetic Field

Nobuo Yoshida1

We consider Glauber dynamics on a finite cube in (he (/-dimensional lattice
(d^2), which is associated with basic Ising model at temperature T= !//?« 1
under a magnetic field h > 0. We prove that if the "effective magnetic field" is
positive, then the relaxation of the Glauber dynamics in the uniform norm is
exponentially fast, uniformly over the size of underlying cube. The result covers
the case of the free-boundary condition with arbitrarily small positive magnetic
field. This paper is a continuation of an attempt initiated earlier by Schonmann
and Yoshida to shed more light on the relaxation of the finite-volume Glauber
dynamics when the thermodynamic parameter (/?, /i) is so near the phase transi-
tion line, { ( / 3 , l i ) ; p c < p & h = 0\, that the Dobrushin-Shlosman mixing condi-
tion is no longer available.

KEY WORDS: Ising model; mixing conditions; Basuev region; boundary
conditions; Glauber dynamics; exponential relaxation, spectral gap.

1. INTRODUCTION

We begin by reviewing the standard setup of the model. We then introduce
some more specific backgrounds of our results.

The lattice. We will work on the c/-dimensional integer lattice 1?—
{x = (,x')f=!: x' e Z} with d^ 2, on which we consider the /t-metric; j|.x[| t =
£f=1 I-V|. The number of points contained in a set A <=. Zrf is denoted
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by \A\ and we write A c c Zrf when 1 ̂  \A\ < oo. The interior and exterior
boundaries of a set A c Zd will be denoted respectively by

A set AcicZd is called a box when A = Zdn f[/=i IV',^') for some
integers aj <bj (j= 1,...,«). A box /I, expressed as above is called a cw6e
when all side-lengths bj — aij (j=l,...,n) are identical. For xeZd and
/=1,2,..., a cube with the center x and the side-length 2/ is denoted by
6*C); (?*(/) = Zd<">nf=i [-*'-/, x' + l). Q0(l) will be simply denoted by
0(1).

The configurations and the Gibbs states. Configuration spaces are
defined as follows;

We will refer an element a> of Q as a boundary condition. Three boundary
conditions are specially relevant: ( + ) and (0), which are defined respec-
tively by ( +),,. = ± 1 and (0)^ = 0. ( ± ) is called pure ( ± )-boundary condi-
tion and (0) is called the free-boundary condition. They will often be
abbreviated respectively by + and 0 especially when they appear as super-
script. For A<=<=Zd and (a, w)eSAxQ, aA -u>Ac denotes the following
configuration:

The set of all real function on SA is denoted by %,. For A <=. <=. TJ* and
coeQ, Hamiltonian HA~m e ^A is defined by

where ft > 0 and h ^ 0 denote respectively the inverse temperature and the
magnetic field. The real numbers;



Finite-Volume Glauber Dynamics 1017

which appear in the second summation on the right-hand-side of (1.1) is
often called the effective magnetic field. Gibbs state on A with the boundary
condition coeQ is defined as a probability distribution uA'°' = (tA'%' on SA,
in which the probability of each configuration a e SA is given by

where ZAjm is the normalizing constant. We will use the following common
and convenient abbreviation; nA*mf = £<JsS-f fiAyCO{a} f(a) for/e^. The
following facts are well known, (i) The limit m^h = limA^Zd^-^(aQ) exists,
( i i ) nip\h-mjh>0 if h>0. (iii) There exists a critical inverse temperature
/?ce(0, oo) such that rn^Q = m^0 = 0 if (3<fic and m^0>Q>m^0 if fif</}.
Therefore, the (/?, h (-plane is divided into two parts according as
mp,/,~m(i,/> or not, up to the critical point (/?c, 0);

The former is called one phase region and the latter is called phase transition
line.

The Glauber dynamics. Forfe^A, we introduce a difference operator

where a* is defined by;

We also introduce a uniform norm; ||/|| =supCT \f(a)\ and a semi-
norm; HI/HI = ̂ xeA \\Vxf\\. Now, fix AdcZd and coe£2. We define a
linear operator A*-10: <6A -> <€A by

where

It can easily be seen that
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which shows that AA'W is fj.A' ^-symmetric and non-positive definite.
Finally, we define

which is called the spectral gap. gap^1" can be characterized as the largest
number that satisfies

Some backgrounds of our result. For given /? > 0, h e R and w e Q, we
are interested in whether the following exponential relaxation property in
a uniform sense is true;

there exist constants Ct = Ct(d, ft, h, o>)e(0, oo) ( /=1,2) such
that for all cube A, /e <gA and t > 0

for all / e (€A, where

Note first of all that the above exponential relaxation property can be true
only in the one phase region. In fact, it is not difficult to see that, if (1.10)
holds for some /?, h and coeQ, then m^h = m^h. Here we summarize some
of known results and a conjecture;

(i) The exponential relaxation property (1.10) is true for all cue
{ — 1, +1}z , whenever a mixing condition in the sense of the Dobrushin-
Shlosman in a certain restricted sense is valid ([MO94a, MO94b], See also
[SZ92]). This is the case if d = 2 and (fS, h) is in the one phase region
([SS95]) or d^ 3 and (/?, /O is sufficiently deep inside the one phase region
([MO94a])

(ii) It is conjectured that if d^3, ft is sufficiently large and h is a
certain small positive number depending on ft, then there is an a> e Q which
violates the exponential relaxation property. The part of the (/?, /?)-plane
reffered to above is often called "Basuev region."

Though the conjecture (ii) above is not vindicated yet, there are some
results on related models which suggest the existence of such "dangerous"
boundary condition ca&Q ([CM96a, CM96b, DM94]). On the other
hand, the conjecture motivated an attempt to find out a class of "safe"
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boundary conditions when (ft, h) is sitting in the one phase region but near
the phase transition line. In fact, it is proved in [ SY97, Theorem 4.1 ] that
the exponential relaxation property (1.10) is true (for any /IccZ'*, not
only for cubes) at least in the following three cases: (a) d^2, /?</?<., h^O
and oi eQ is such that all components of the effective magnetic field
(cf. (1.2)) are non-negative for any A, (b) d = 2, P^PC, h>0 and co= +1,
(c) d^ 3, /? is sufficiently large, h > 0 and co = +1. In the present paper, we
continue the program in [SY97] to understand more about the exponen-
tial relaxation property in the Basuev region. A technical constraint in
working in the region where the Dobrushin-Shlosman mixing condition is
no longer available is that we have to abandon the use of logarithmic
Sobolev inequality, which is in a very powerful analytic tool to establish
the exponential relaxation property ([MO94b, SZ92]). We instead use the
more specific structures of the ferromagnetic Ising model, especially attrac-
tivity and Ising percolation.

2. RESULTS

The main result in this paper is the following

Theorem 2.1. There exists /?0 = /?0(</)e(0, oc) for which the fol-
lowing hold.

(a) For any y5>/?0 and h0>0, there exist constants C,—
Ci(d, /?, h0) e (0, oo) (/' = 1, 2) such that if h > 0, co e Q and a cube A satisfy

then for all /e <$A and t > 0

(b) Fory9>£0,

Furthermore, in the case of the free-boundary condition, there exist
C3 = C3(d, ft)6(0, oo) and C4 = C4(oT)e(0, oo) such that for any he(0,1)
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Remark 2.1. The condition (2.1) is satisfied for any h>0, if all
coy's are non-negative. It is the case of very small h when the conclusion of
the theorem becomes really interesting because, for d > 3, it covers the
Basuev region reffered to in the previous section. Even for d = 2, our result
seems to be new, since it also applies to the free boundary condition.
Part(a) for pure ( +(-boundary condition has already been obtained in
[SY97, Theorem 4.1, part(b)] (in fact for any Ac^Zd, not only for
cubes). The extension to the present case, which includes the case of free
boundary condition with any positive magnetic field was a question left
unsolved in that paper. The uniform positivity of the spectral gap in (2.4)
is in sharp contrast with what happens at the phase transition line of h = 0.
In fact, [T89, Proposition 2.4] says that there are C,= C,(d)e(Q, oo)
(/= 1, 2) such that for sufficiently large ft and /? = 0,

for any /> 1. On the other hand, the right-hand-side estimate in (2.4) is a
manifestation of the phase-coexistence at h = 0. This contrasts with the
situation at high temperature; [SY97, Theorem 4.1, part(a)] implies in
particular that 0 < inf{gap£A°; A <=.c Zd, h ^ 0} if fi < ftc.

Part (a) of Theorem 2.1 is obtained by combination of Proposition 2.2
and Proposition 2.3, which we present below.

Proposition 2.2 [SY972]. Suppose that A^dd and that
{Bl, B2} c (0, oo) are such that for a certain boundary condition w eQ

Then there exists {C t, C2} c (0, oo) which depend only on d, ft, h, 5L and
B2 above such that (2.2) holds for all/e^ and all t>0.

Proposition 2.3. There exists /?0 = /?0(a[)e(0, co) for which the
following holds. For any /?^/?0 and A0e(0, oo), there exist constants
Bt = B,.(d, fi, h0) e (0, oo) (/ = 1, 2) such that (2.6) holds for all fi>p0,h>Q,
coeQ and a cube A which satisfy (2.1).

In Section 3, we will prove Proposition 2.3 by using Proposition 2.4
below, which is an extension of [Sch94a, Theorem 3]. To state Proposi-
tion 2.4, we need to introduce some more notations. We take a subset
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£c { + 1,..., ±d] to specify some of 2rf basic directions in the lattice. We
suppose that E is non-degenerate;

We first describe a boundary condition around a box A, which equals ( + )
on faces in ^-directions and equals (0) on the other faces. Let 8j-
(<:>/* )Li e Zrf and d_j= -d} ( j = l , 2 , . . . , d ) . For a box A <=Zd, deMA is the
disjoint union of d(£tA f o r y = ±1,..., ±d, where

We let ( ± ; E ) denote a configuration on deMA which is =±1 on
(JjSEdexlA and =0 on {jjiEd^A.

We next define a box Q(l; E) ( / > 0 ) by

where

As / increases, Q ( l ; E ) grows larger only in the directions specified by E.
Finally for A c A c Zd, a e SA and e = + or —, (s)-path in A at a con-

figuration <r is a sequence y = U,.e^)"=0 such that \\x, — xi=i ||, = 1 for
1 ̂  / ̂  n and ax = el for x e y.

Proposition 2.4. For each Be(d, oo) and /le(0, 5), there exists
/?0 = /?0(rf,^, 5)6(0, oo) such that for A^/?0,

where 3S(A/h\ E) stands for an event that there is a (— )-path in Q(B/h; E)
which connects Q(A/h; E) to a site adjacent to U/S.E d(<£tQ(B/h; E).

Remark 2.2. In the case of £={ + !,..., ±d}, in which the smaller
box Q(A/h; E) goes far away from 9ext Q(B/h; E) as h \0. Proposition 2.4
is what can be read off directly from the proof of [ Sch94a, Theorem 3], We
also need to consider the case of £V { ±l,.-» +d}, in which the situation
is slightly different, since as h\Q, the smaller box Q(A/h; E) goes far away
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from (Jjes d(
e
J^Q(B/h; E) where ( — (-boundary condition is put, but it

stays adjacent to (Jj^E d(^Q(Bjh; E) where free-boundary condition is put.
The upshot is that it is possible to modify the argument in the proof of
[Sch94a, Theorem 3] to cover the case of E+ { ± 1,..., ±d}, as far as (2.7)
is satisfied. The proof of Proposition 2.4 will be sketched in Section 4.

For the part (b) of Theorem 2.1, the uniform positivity of the spectral
gap in both (2.3) and (2.4) is the consequence of the part (a). The right-
hand-side estimate of (2.4) comes from the following

Proposition 2.5. There exist /?0 = /50(d) e(0, oo) and Cl = C l ( d ) e
(0, oo) for which the following holds. For any /?^/70 and B^ 1 there exists
C2 = C2(d, /?, B) e (0, oo) such that for any h e (0, 1),

Remark 2.3. It is not difficult to see that

for some C(d, j8, .B)e(0, oo) ([Sch94a, Theorem 5], for example). Thus,
the inequality (2.10) is sharp up to constants. Similar upper and lower
bound of the spectral gap for (— J-boundary condition can be found in
[Sch94b, Theorem 4]

Remark 2.4. Proposition 2.5 says a little more than is needed to
conclude the right-hand-side estimate of (2.4). In fact, the right-hand-side
estimate of (2.4) can be obtained just by proving (2.10) for small enough B.
The proof of (2.10) in this case is easy as we present now. It is not difficult
to see that

From this and a standard comparison argument, we get

for some c0 = C0(d) e (0, oo). We then apply (2.5) to see that the right hand
side of the above inequality is bounded from above by

which proves (2.10) when B<C2/4.
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3. PROOF OF PROPOSITION 2.3

In this section, we give a proof of Proposition 2.3. We begin by reducing
the proof to the case of u> = 0. This is possible by the following inequality;

The above inequality is proved as follows. This is where the condition (2.1)
is used. For an inhomogeneous magnetic field {/izeR; re/I r\ Q x ( l ) } , we
define a probability measure v{h'} on SA^Q*(n by

where

with £<»,»> denoting the summation over all nearest neighbour pairs in
the set A n Qx(l). We will need the following fact; if inhomogeneous
magnetic fields {ft*} and {fc*} are given such that for each zeA n Q x ( l ) ,

and

then

The proof of this fact, can be given in the same way as that of [ Hig93,
(2.15)]. At this point, we make the following particular choice of { h * } and
( l f ± \ -
\KZ /'
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In this case (3.2) is obvious and (3.3) follows from (2.1). Since v < A ' ' =
/ u ^ Q x ( D , ( ± ) A - a > c a n d n  v { k * }  = ^ Q x ( , ) , ( ± ) A . ( a A ^  ( 3 _ 4 )  i m p , i e s  ( 3  1 }

The basic strategy to prove that the right-hand-side of (3.1) decays
exponentially in / is similar to Appendix 1 of [ MO94a], where the "effective-
ness" of a mixing condition for Gibbs states is discussed. We apply coupling
technique to derive a recursive inequality, which leads to desired exponential
decay. An alternative proof, which does not rely on such coupling technique
is presented in [Y97].

Let us abbreviate A n Qx(l) and (±)A-QAc respectively by F and £*
for simplicity. It is convenient to introduce the following restricted con-
figuration space; SA-" = (aA -t]Ac\ ere S^} (A ccZ^, rjeQ). Define;

We are going to prove that Fx(l) decays exponentially in /. To this end, we
may and will assume that

where m = m(h, d, (1) ̂  I/A is a large enough integer which will be specified
at the end of the proof. It is enough to establish the following recursive
inequality;

In fact, starting from z = x, we can iterate (3.6) at least n = \_(l/2)/
m(d+ 1) + 1J times to obtain

which is what we want to prove.
To prove (3.6), we begin with some geometry. For zeF, define

E(z) = {-2d^j^2d- z + dj.eF}. Ifz^d^F, then E(z) = { ± 1,..., ±d). If
zed-mtF, then E(z) is a collection of "inward" directions to F. Note that
E(z)r\{ — j, +j} ^(j> for any zeF. Furthermore, for each zeF, we can
find zeF such that

If z is near diMF, we have to choose z from dintF. We set F(z)=z +
Q((d+ \}m, E(z)). At this point, let us make the following observation for
later use;
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This can be seen as follows. Since z e Q x ( l / 2 ) , we see from (3.5) that
dex,r(:)cQx(l). This implies that deMP(z)\r is contained in Qx(l)\r,
where both /;' and r]2 are identical to 0.

We will use the following coupling (cf. [BM94, Theorem 2]); for each
Ac F and (r;1, r]2) e Sr-C x Sr > c +, there is a probability measure ^-I'-i2 on
the coupled configuration space S^-*'xS^*2 = {(o-1, ff2); o-'eS"1-'7''} such
that (i) fiA-"^'>1 is a coupling of fip'^ and {*%£, i.e., its first and second
marginals are /.i^^ and fip'tf, respectively, ( i i) If rjl <>j2, then ^-I'-i1 is

above diagonal in that /^•^•"'{cr1 ^a2} = 1. ( i i i ) For :eA<

We now claim that for =eQx(l/2) and (^', rj2)e Sr'c x5r ' f + ,

where G! = Cj(/?, ^) e (0, cc) is a constant. This can be seen as follows. If
tjl=r;2 on rn3extT(z), then it follows from (3.8) that q l = r j 2 on dextF(z),
which implies (Mr(z)'"''"V] ^°1} =° bY (3-9)- If tjl^tj2 on rndextr(z).
we can use (3.8) and (3.9) to see that
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where we have used the FKG inequality in passage to the last line. By (3.7)
and Proposition 2.4, the probability appearing in (3.11) is bounded from
above by exp(C[ — m/Cl) with some Q = C^d, /?)e (0, oo). This proves
(3.10). We finally define a measure fir on Sr'r xSr'c+ by

Then ftr is a coupling of y"££+ and is above diagonal. We thus have that

When zeQx(l/2), we can plug (3.10) in (3.12) to obtain

which proves (3.6) by taking m large enough.

4. PROOF OF PROPOSITION 2.4

In this section, we sketch the proof of Proposition 2.4, which is an
extension of [ Sch94a, Theorem 3 ]. Although the proof requires fairly long
sequence of elaborate arguments and estimates as can be seen from that of
[Sch94a], the same argument as in that paper works in the generality we
need, with some modifications. So, we do not go further than to present
some key lemmata, in which we indicate some essential changes we have to
make to generalize the techniques in [Sch94a]. We begin by introducing
some notations.

The set B of bonds in Zrf is defined by

For a set A, we also define

The number of bonds contained in a set j c B will be denoted by \y\.



A contour is a finite subset y c B with the following properties; there
exists a finite subset 0 c Zd such that both & and 0C is connected and that
(i i) y = d@. The set 6 is uniquely determined by y and hence is denoted by
0(y). Since a contour y is a set of connected bonds in the sense explained
in the bottom paragraph of [Sch94a, page 7], it follows that for each b e B
and w = 1, 2,...,
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for some K\ = / c t ( r f ) e ( 0 , oo) (See (4.24) in [Gri89], for example). For 1 ^/
and a finite set 5<=B, let 3?,(S) be the all possible choice of a family
{}'/}f=i (k=l,...,l) of contours such that £*=i |y , - |= / and ytr\S^<j> for
/= 1,..., /:. Starting from (4.1), it is not difficult to prove that

for some K2 = K 2 ( d ) e ( 0 , oo) ([Sch94a, page 7-8]). If a contour y is a sub-
set of B^ vdA for some A cZd, we say y is a contour in A. For aeSA,
e= + or — and A c Zrf, a contour y is said to be an (e)-contour in A at
tj if it satisfies

A contour y is said to be a contour in A at ere 5"1 if it is either ( + (-contour
in A at er or (— (-contour in A at a. We take E<= { ± I,..., +d} such that
(2.7) holds. For a contour y, we define

where yj={bey;b is parallel to .v-'-axis.}. We will need the following
isoperimetric inequality;

The constant J2(|£|/<*) ' is sharp. In fact, (4.4) becomes equality for a
rectangular contour y of the form; 0(y) = Q(l\E),(l=\, 2,..., ) we will need
exactly the best constant in (4.4), rather than just the existence of some
multiplicative constant for which an inequality of the form (4.4) is true.

Lemma 4.1. For a box A and contours {>'/}*=1 in A, such that
0(y,) n 0(yj) = (/> if i^j, define
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Then

Proof. We first prove the following energy gap estimate; For ae
&A,c,E<^SA(7l,...,yk)

where TffeSA is defined by

Clearly,

On the other hand, by the definition of &A,C,E and tne isoperimetric
inequality (4.4),

Plugging this into (4.10), we get (4.8). Once (4.8) is proved, the rest of the
proof is the same as that of [Sch94a, Lemma 3], hence is omitted.

Lemma 4.2. Suppose that /?>/c2/2, where /c2 is a constant in (4.2).
Then for any 0 < A < d (1 - K2/2fS),



Finite-Volume Glauber Dynamics 1029

where

Proof. We have from the same argument as [Sch94a, Lemma 8]
that

Since

as h\0, the RHS of (4.14) is identified with that of (4.12).

Lemma 4.3. Suppose that two strictly monotone sequences Bn\d
and &, /-oo satisfy J3nm(+'E\ftn)>d for each n = 1,2,... (cf. (4.13)). Then
for each e>0, there is nQ^l depending on the choice of e, {B«}"=1 and
{/?„}^°=, such that for each n^n0and fS^s/?„

where ^(Bn/h; E) is the set of sites in Q(Bn/h; E) which are connected to
a site adjacent to \JJeE d^Q(Bn/h; E) by a ( -)-path.

Proof. Since </( 1 — K2/2fin) Sds Bn as «/»oo, we can pick «0 ^ 1 and
0 < An < d( 1 - K 2 / 2 p n ) such that

822/90/3-4-33

for n ̂ n0. Suppose that \^(BJh; E)(a)\ ^ (e/h)d and that y = y(cr) is the (+ )-
contour in Q(Bn/h;E) which maximizes |6>(y)|. Then, ff€^Q(Bn/h.iEYtAn/htE,
since
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Therefore,

(4.15) now follows from Lemma 4.2. Q.E.D.

The rest of the proof of Proposition 2.4 is sketched as follows. It is
enough to consider the case A < d. In fact, the case d ̂  A can easily be
reduced to the case of A <d as follows. Define A', B' and ti by A'/A =
B'/B = h'/h = 2d/(A + B) < 1 Then, A' < d< B' and

by the FKG inequality. For A<d,we consider ^Blh-E)-(£; '-probabilities
of following two events separatedly;

By Lemma 4.3, the probability of the first event has an estimate of the form
Cexp{ — Cjhd~1} for large enough /?. For the second probability, we can
proceed in line with [Sch94a, Lemma 10, 11] to obtain an upper bound of
the form Cexp( — C/h) if e is small and ft is large. Putting these two
together, we get Proposition 2.4.

5. PROOF OF PROPOSITION 2.5

We will use the following variational characterization of the spectral
gap;
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To describe an appropriate trial function / e C6A to plug in, we make the
following definitions. For c>0 and a box A, define

Now, by plugging the indicator function % of the event ^Q(i,/h),A/h
(Q<A<B) in (5.1), we obtain the following estimate of the spectral gap,
which is reminiscient of the use of Cheeger constant in differential
geometry.

We will estimate the probabilities in the numerator and the denominator
of (5.4) in a series of lemmata.

Lemma 5.1. For a box e(fi/A), A/h and contours {yt}^=1 in A, such
that 0(yt)ri0(yj) = 4> if < ^ J > recall that we have defined an event
SA(yi,...,yk) by (4.6). Suppose now lhatO<A<d/(2(d+\)). Then for any
B^\ and A e ( 0 , 1)

Proof. We first prove the following; for a e $Q(B/h) A/H n
SQ^\yi,...,yk)

where TaeSA is defined by (4.9). Clearly,
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Since |<9{y,)| ^ Ad \Q(B/h)\, we see from (a careful reading of the proof of)
[T89, Lemma A.I] that

On the other hand, we have from \&(y,-)\ ^ (2A/h)d that |@(>',-)! ^ A/dh |}',|,
(cf. the proof of ( 4 . l l ) ) . Plugging this and (5.8) into (5.7), we get (5.6).
Once (5.6) is proved, the rest of the proof is the same as that of [Sch94a,
Lemma 3], hence is omitted. Q.E.D.

Lemma 5.2. Suppose that 0<A <d/(4(d+1)) and that
P(\ — 2A(d+ \)/d) >K2, where K2 is the constant in (4.2). Then, there is
C(d, /?) e (0, oo) such that for any B ^ 1 and h e (0, 1),

Proof. We begin by observing how a configuration in d$AtC looks
like. For aey$AtC,ax£0lAt<, is possible only when the following occurs;
there is a collection of ( + j-contours {7,.} ^, in A at a for some k = 1, 2,...
such that y,Bx (l^i^k) and such that the flipping of the spin at x makes
them coalesce into a new ( + (-contour y in A at ax with 10(7)1 > (2c}d. We
then have 0(y) = {x] u ( ( J? = i <9(y/ ) ) , and thus

Since \ 0 ( y i ] \ ^ ( 2 c } d for !< /<£ , we have that \®(y,}\ «Sc \y,\/d (cf. the
proof of (4.11)). Combining this and (5.10), we obtain

From what we have observed above, we see
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where l0(A/h) = 2d{(2A/h)d~l - \/2A} and &,(x) stands for all possible
choice of a family {y,} of contours in Q(B/h) such that £*=1 \y,\ =1 and
y / 3 X . By (4.2), Lemma 5.1 and our assumption on A and /?,

From this and (5.12), it is straightforward to conclude (5.9).

Lemma 5.3. For any ee(0 ,1) and Q<A <d/2(d+ 1), there is
00(d, E, A) e (0, oo) such that for ft ^ /?0

Proof. We start with the following obvious inequality;

The first probability in the RHS of (5.14) is less than 1/2 since h > 0. In a
configuration of ^e(a/A)iX/An {CTO= 1}, the origin must be surrounded by a
( + )-contour y in Q(B/h). Since a necessarily crosses the positive half of the
x'-axis, we have from Lemma 5.1 and (4.1) that
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which converges to 0 as /?/oo, uniformly in B and h. This completes the
proof of the lemma. Q.E.D.

We now conclude the proof of Proposition 2.5. We take A =
d / ( 8 ( d + l ) ) . Then there is fS0(d) e(0, oo) such that (5.9) holds for /1^(J0.
On the other hand, we see from Lemma 5.3 that, there is fll(d)e(0, oo)
such that for y? 5s/?!

Therefore, for /?2smax{/?0, /?i}, we may plug (5.9) and (5.15) into (5.4) to
«ie.t O.lfn.
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